Intracellular Proton Access in a Cl−/H+ Antiporter
نویسندگان
چکیده
Chloride-transporting membrane proteins of the CLC family appear in two distinct mechanistic flavors: H(+)-gated Cl(-) channels and Cl(-)/H(+) antiporters. Transmembrane H(+) movement is an essential feature of both types of CLC. X-ray crystal structures of CLC antiporters show the Cl(-) ion pathway through these proteins, but the H(+) pathway is known only inferentially by two conserved glutamate residues that act as way-stations for H(+) in its path through the protein. The extracellular-facing H(+) transfer glutamate becomes directly exposed to aqueous solution during the transport cycle, but the intracellular glutamate E203, Glu(in), is buried within the protein. Two regions, denoted "polar" and "interfacial," at the intracellular surface of the bacterial antiporter CLC-ec1 are examined here as possible pathways by which intracellular aqueous protons gain access to Glu(in). Mutations at multiple residues of the polar region have little effect on antiport rates. In contrast, mutation of E202, a conserved glutamate at the protein-water boundary of the interfacial region, leads to severe slowing of the Cl(-)/H(+) antiport rate. An X-ray crystal structure of E202Y, the most strongly inhibited of these substitutions, shows an aqueous portal leading to Glu(in) physically blocked by cross-subunit interactions; moreover, this mutation has only minimal effect on a monomeric CLC variant, which necessarily lacks such interactions. The several lines of experiments presented argue that E202 acts as a water-organizer that creates a proton conduit connecting intracellular solvent with Glu(in).
منابع مشابه
Conversion of the 2 Cl(-)/1 H+ antiporter ClC-5 in a NO3(-)/H+ antiporter by a single point mutation.
Several members of the CLC family are secondary active anion/proton exchangers, and not passive chloride channels. Among the exchangers, the endosomal ClC-5 protein that is mutated in Dent's disease shows an extreme outward rectification that precludes a precise determination of its transport stoichiometry from measurements of the reversal potential. We developed a novel imaging method to deter...
متن کاملProton transport pathway in the ClC Cl-/H+ antiporter.
A fundamental question concerning the ClC Cl-/H+ antiporters is the nature of their proton transport (PT) pathway. We addressed this issue by using a novel computational methodology capable of describing the explicit PT dynamics in the ClC-ec1 protein. The main result is that the Glu203 residue delivers a proton from the intracellular solution to the core of ClC-ec1 via a rotation of its side c...
متن کاملNeonatal rabbit proximal tubule basolateral membrane Na+/H+antiporter and Cl-/base exchange.
The present in vitro microperfusion study examined the maturation of Na+/H+antiporter and Cl-/base exchanger on the basolateral membrane of rabbit superficial proximal straight tubules (PST). Intracellular pH (pHi) was measured with the pH-sensitive fluorescent dye 2',7'-bis(2-carboxyethyl)-5(6)-carboxyfluorescein in neonatal and adult superficial PST. Na+/H+antiporter activity was examined aft...
متن کاملModification of the internal pH sensitivity of the Na+/H+ antiporter by parathyroid hormone in a cultured renal cell line.
Sodium-proton antiporter activity can be modulated through changes Vmax and/or intracellular proton sensitivity of the antiporter. To characterize a parathyroid hormone (PTH)-induced decrease in antiporter activity in a continuous renal cell line (opossum kidney cells), the extracellular sodium and intracellular proton dependence of amiloride-inhibitable 22Na uptake was studied. The Km for extr...
متن کاملIntracellular pH regulation in human preimplantation embryos.
We report here that intracellular pH (pH(i)) in cleavage-stage human embryos (2-8-cell) is regulated by at least two mechanisms: the HCO(3)(-)/Cl(-) exchanger (relieves alkalosis) and the Na(+)/H(+) antiporter (relieves acidosis). The mean pH(i) of cleavage-stage embryos was 7.12 +/- 0.008 (n = 199) with little variation between different stages. Embryos demonstrated robust recovery from alkalo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 10 شماره
صفحات -
تاریخ انتشار 2012